
Why integrate?

1 Introduction

Teaching physics my colleagues and I often find that some of you find it difficult to see when you need to
use integration. This session will explain the need for integration using some basic ideas and examples.
There will be a second session on integration in semester 2 looking at some more involved issues. Here we
concentrate on when to integrate and how to set up integrals in a physics context.

2 Integrating constant functions

Consider a car driving along the positive x-axis maintaining a constant velocity v. A force due to friction of
the tyres on the road acts on the car and can be expressed as F =−kv, where k is a constant.

Why is there a minus sign in this definition? (The minus sign indicates that the force is acting in a direction
opposite the velocity of the car, i.e. it slows the car down.)

To maintain the constant velocity v the car has to do work. What is the total work done by the car travelling
from x = 0 to x = d? (The work done is equal to W =−Fd = kvd. Note that this is a special case! Firstly,
normally there is an integral involved in calculating W from F along d, see below. Secondly, the force is a
vector and in general the product of F and the distance d is a dot-product between two vectors!)

In this case the force is constant along the way and we can easily make a plot of this:
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The work done by the car is simply the area under the solid line, i.e. the hatched area in this plot:

3 Integrating a non-constant function

The force needed to extend a spring by a length x is usually given by F = −kx, where k is now the spring
constant. If we extend a spring a very long way, then the force becomes non-linear, e.g. F =−kx−ax3.

How much work do we need to do to extend this non-linear spring from x = 0 to x = d? Let’s first plot the
force:

If we now simply multiply the value of the force at the largest extension, x = d, with the magnitude of the
force at this point, F(d) =−kd−ad3, we get the answer wrong as shown in this plot:

Why does this not work? (The magnitude of the force changes along the way.)
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A lot of people realise this and so try to multiply the extension of the spring with an intermediate magnitude
of the force, say half-way between x = 0 and x = d. The thinking behind this is something like: ‘The force
changes its magnitude along the way. So I can’t multiply the extension with the magnitude of the force at
the very beginning nor with the magnitude of the force at the very end. So, something in the middle should
work.’ Well, it doesn’t as shown in this plot:

You have to be very lucky to just hit the correct answer this way!

Where is the problem? The problem is that the force above is not constant along the entire way. However, we
can split the distance d into lots of tiny parts of length dx. Mathematically we can make these differentials
dx as small as we like. Let’s have a look at this in a plot:

In this plot you can probably still see a small difference between the magnitude of the force at x and the one
at x + dx, but it’s not very big. If I make dx much smaller than the one plotted here, i.e. dx→ 0, then the
difference of the magnitude of the force at x, F(x), and the magnitude of the force at x+dx, F(x+dx), also
becomes very small, i.e. F(x)−F(xdx)→ 0. So, over the very small distance dx the magnitude of the force
is constant. This means I can work out the very small amount of work done by extending the spring from x
to x+dx as dW =−F(x)dx.

If I now want to work out the total amount of work done from x = 0 to x = d, I need to sum up all the tiny
contributions dW along the way. This is then simply an integration:

W =−
Z d

0
F dx.

The solution of the integral is fairly straightforward. Graphically what we now get is:
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The trick with setting up an integral is to spot the correct variable to integrate over. Let’s look at some more
examples.

4 Surface integrals

I’m an astronomer, so let’s look at an astronomy example. Many galaxies like the Milky Way are essentially
a circular disc. We can measure the density of matter (stars, gas, . . . ) by a variety of observations. To first
approximation we often find that the surface density, i.e. mass per unit area, in the disc is a function of
radius, r. A simple example would be

n = n0

(
r
r0

)−1

,

where clearly n0 is the surface density at the scale radius r0.

We now want to work out the mass of the matter in this disc between r = 0 and r = rmax. Given what we said
before, it may be a good idea to define a very small area of the disc, dA, over which n does not vary so that
we can work out the mass of this very small area as dm = ndA. We can then sum up all the contributions
dm from all the very small dA that make up the disc. Clearly this leads again to an integral.

The question now is, how best to divide up the disc into lots of dA? We could use a Cartesian co-ordinate
system with variables x and y. This would allow us to define dA = dxdy, but as you can see, that means we
need to integrate over two variables, x and y. Also, we need to work out r as a function of x and y to use the
correct value of n for each combination of x and y. While this is perfectly possible, it makes life difficult.

From the expression for n we may note that n is constant for constant r. This defines a circular ring on the
disc where n is constant. If we now move out by a very small distance dr, then the surface density will be
almost constant over the area of the ring between r and r +dr. The plot illustrates this:
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What is the area of the ring between r and r+dr? The simplest idea is to take the circumference of the inner
boundary of the ring, 2πr, and multiply this by the thickness of the ring, dr giving 2πr dr. Why does this
work? The area of the disc inside r + dr is π(r + dr)2. The area of the disc inside r is πr2. The area of the
ring must then be π(r +dr)2−πr2 = 2πr dr +π(dr)2. The differential dr is very small, certainly compared
to r. Therefore we can neglect the term π(dr)2 compared to 2πr dr and so the area of the ring is 2πr dr as
before.

The very small contribution to the total mass by the ring is then dm = ndA = n2πr dr. The total mass must
be

m =
Z

ndA =
Z rmax

0
n2πr dr = 2πn0r0

Z rmax

0
dr = 2πn0r0rmax.

Integrating over r makes life much simpler!

5 Volume integrals

The same principle often works in 3D as well. Let’s work out the mass of a spherical star extending to a
radius Rmax with a density distribution (this time this is mass per unit volume) of

ρ = ρ0

(
R
R0

)−1

.

This time we need to define very small volume elements dV over which ρ does not vary. Again we could
do this in Cartesian co-ordinates, x, y and z, and find the answer, but this time this would require integrating
over three variables!

The much simpler way to do this is by realising that the density is constant as a function of R, which defines
a sphere with radius R on the surface of which ρ does not vary. We can then define a spherical shell by
extending R by a very small amount dR. What is the volume of this very thin spherical shell?

The simplest way of doing this is to multiply the surface area of the inner boundary of the shell, 4πR2, with
the thickness of the shell, dR. Thus dV = 4πr2 dr. Why is this correct? The volume of the sphere inside
R + dR is 4/3π(R + dR)3. The volume inside R is 4/3πR3. Therefore the volume of the spherical shell
between R and R+dR must be

dV =
4
3

π(R+dR)3− 4
3

πR3 =
4
3

π
[
3R2 dR+3R(dR)2 +(dR)3] .

Again we neglect terms containing (dR)2 or even (dR)3 and so again dV = 4πR2 dR.
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The contribution to the total mass by the spherical shell is now dm = ρdV . The total mass is given by

m =
Z

ρdV =
Z Rmax

0
ρ4πR2 dR = 4πρ0R0

Z Rmax

0
RdR = 2πρ0R0R2

max.

Again this is much simpler than trying to do this in Cartesian co-ordinates.

6 Line integrals

As mentioned before, the trick with integration is often to spot the best variable to integrate over. Let’s look
at the next astronomy example.

Galaxies like the Milky Way are not perfect discs, but they contain spiral patterns. Assume that all the mass
in the Milky Way is concentrated along a very narrow spiral described by

R = R0 exp(kθ),

where k is a constant. This looks like this:

If we follow the spiral arm for one turn around the centre of the Milky Way, how long is the path we have
travelled? The variable s measures the length of the path along the spiral. So for θ = 0 we have R = R0 and
s = 0. The above question then boils down to: ‘What is the value of s at θ = 2π?’

As before, we can in principle work this out using Cartesian co-ordinates. But this one would be very tricky!
Consider travelling a very short way ds along the spiral. Over this very short distance the value of R does
not change. Can we express ds in terms of R? Consider this plot:
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The differential ds can be written as Rdθ. But this is all we need since we have a relation between R and θ

along the spiral. The length of our path is the sum of all the very short distances ds,

s =
Z

ds =
Z 2π

0
Rdθ =

Z 2π

0
R0 exp(kθ)dθ =

R0

k
[exp(2πk)−1].

7 Final remarks

The tricky bit with integrals is to set them up. From the examples above we see that usually we can think
of integrals in terms of summing very small contributions to give a grand total. The contributions are very
small to ensure that a function stays constant within the small contribution while it may vary considerably
over the entire range of the sum/integral. It is often difficult to spot the best variable to integrate over. The
best way to spot the best choice is to draw diagrams and think about how the various functions vary with the
possible choice of variables. In most cases there is some kind of symmetry in the problem that makes the
function constant along lines or on surfaces. If we can find such lines or surfaces, then we can usually find
a way of simplifying the integral.

Written by Christian Kaiser, 2007.
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